93
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Investigation for metallic crystals through chemical invariants, QSPR and fuzzy-TOPSIS

, , , &
Pages 2316-2327 | Received 06 Feb 2023, Accepted 11 Apr 2023, Published online: 08 May 2023
 

Abstract

Chemical graph theory has revolutionary impacts in the field of mathematical chemistry when complex structures are investigated through various chemical invariants (topological indices). We have performed evaluations by considering alternatives as crystal structures, namely Face-Centered Cubic (FCC), hexagonal close-packed (HCP), Hexagonal (HEX), and Body Centered Cubic (BCC) Lattice structures, through the study of two-dimensional degree-based chemical invariants, which we considered criteria. QSPR modeling has been implemented for the targeted crystal structures to investigate the ability of targeted chemical invariants to predict targeted physical properties. Furthermore, the Fuzzy-TOPSIS technique provides the optimal structure HCP ranking as first among all structures when investigated under more than one criterion, which justifies further that the structure attaining dominant countable invariant values ranks high when investigated through physical properties and fuzzy TOPSIS.

Communicated by Ramaswamy H. Sarma

Data availability statement

The datasets generated and/or analyzed during the current study are available in this study only.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The authors thank the National Key Research and Development Program under Grant 2018YFB0904205, Science and Technology Bureau of ChengDu (2020-YF09-00005-SN), Sichuan Science and Technology program (2021YFH0107) and Erasmus + SHYFTE Project (598649-EPP-1-2018-1- FR-EPPKA2-CBHE-JP).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.