580
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Immunoinformatic based designing of potential immunogenic novel mRNA and peptide-based prophylactic vaccines against H5N1 and H7N9 avian influenza viruses

, , , , , , , & show all
Pages 3641-3658 | Received 31 Oct 2022, Accepted 10 May 2023, Published online: 24 May 2023
 

Abstract

Influenza viruses are the most common cause of serious respiratory illnesses worldwide and are responsible for a significant number of annual fatalities. Therefore, it is crucial to look for new immunogenic sites that might trigger an effective immune response. In the present study, bioinformatics tools were used to design mRNA and multiepitope-based vaccines against H5N1 and H7N9 subtypes of avian influenza viruses. Several Immunoinformatic tools were employed to extrapolate T and B lymphocyte epitopes of HA and NA proteins of both subtypes. The molecular docking approach was used to dock the selected HTL and CTL epitopes with the corresponding MHC molecules. Eight (8) CTL, four (4) HTL, and Six (6) linear B cell epitopes were chosen for the structural arrangement of mRNA and of peptide-based prophylactic vaccine designs. Different physicochemical characteristics of the selected epitopes fitted with suitable linkers were analyzed. High antigenic, non-toxic, and non-allergenic features of the designed vaccines were noted at a neutral physiological pH. Codon optimization tool was used to check the GC content and CAI value of constructed MEVC-Flu vaccine, which were recorded to be 50.42% and 0.97 respectively. the GC content and CAI value verify the stable expression of vaccine in pET28a + vector. In-silico immunological simulation the MEVC-Flu vaccine construct revealed a high level of immune responses. The molecular dynamics simulation and docking results confirmed the stable interaction of TLR-8 and MEVC-Flu vaccine. Based on these parameters, vaccine constructs can be regarded as an optimistic choice against H5N1 and H7N9 strains of the influenza virus. Further experimental testing of these prophylactic vaccine designs against pathogenic avian influenza strains may clarify their safety and efficacy.

Communicated by Ramaswamy H. Sarma

Disclosure statement

The authors declared no conflict of interest.

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.