556
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Structural and functional effects of the L84S mutant in the SARS-COV-2 ORF8 dimer based on microsecond molecular dynamics study

, , , ORCID Icon, , , ORCID Icon & ORCID Icon show all
Pages 5770-5787 | Received 10 Jan 2023, Accepted 17 Jun 2023, Published online: 04 Jul 2023
 

Abstract

The L84S mutation has been observed frequently in the ORF8 protein of SARS-CoV-2, which is an accessory protein involved in various important functions such as virus propagation, pathogenesis, and evading the immune response. However, the specific effects of this mutation on the dimeric structure of ORF8 and its impacts on interactions with host components and immune responses are not well understood. In this study, we performed one microsecond molecular dynamics (MD) simulation and analyzed the dimeric behavior of the L84S and L84A mutants in comparison to the native protein. The MD simulations revealed that both mutations caused changes in the conformation of the ORF8 dimer, influenced protein folding mechanisms, and affected the overall structural stability. In particular, the 73YIDI76 motif has found to be significantly affected by the L84S mutation, leading to structural flexibility in the region connecting the C-terminal β4 and β5 strands. This flexibility might be responsible for virus immune modulation.  The free energy landscape (FEL) and principle component analysis (PCA) have also supported our investigation. Overall, the L84S and L84A mutations affect the ORF8 dimeric interfaces by reducing the frequency of protein–protein interacting residues (Arg52, Lys53, Arg98, Ile104, Arg115, Val117, Asp119, Phe120, and Ile121) in the ORF8 dimer.  Our findings provide detail insights for further research in designing structure-based therapeutics against the SARS-CoV-2.

Communicated by Ramaswamy H. Sarma

Disclosure statement

No potential conflict of interest was reported by the authors.

Acknowledgements

We are grateful to our donors who supported to build a computational platform (http://grc-bd.org/donate/). The authors like to acknowledge the World Academy of Science (TWAS) to purchase High-Performance Computer for performing molecular dynamics simulation.

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.