2,220
Views
174
CrossRef citations to date
0
Altmetric
Original Articles

Sensor-driven prognostic models for equipment replacement and spare parts inventory

&
Pages 629-639 | Received 01 Oct 2006, Accepted 01 Jul 2007, Published online: 25 Apr 2008
 

Abstract

Accurate predictions of equipment failure times are necessary to improve replacement and spare parts inventory decisions. Most of the existing decision models focus on using population-specific reliability characteristics, such as failure time distributions, to develop decision-making strategies. Since these distributions are unaffected by the underlying physical degradation processes, they do not distinguish between the different degradation characteristics of individual components of the population. This results in less accurate failure predictability and hence less accurate replacement and inventory decisions. In this paper, we develop a sensor-driven decision model for component replacement and spare parts inventory. We integrate a degradation modeling framework for computing remaining life distributions using condition-based in situ sensor data with existing replacement and inventory decision models. This enables the dynamic updating of replacement and inventory decisions based on the physical condition of the equipment.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.