40
Views
30
CrossRef citations to date
0
Altmetric
Scheduling & Logistics

CONWIP ASSEMBLY WITH DETERMINISTIC PROCESSING AND RANDOM OUTAGES

&
Pages 97-109 | Published online: 31 May 2007
 

Abstract

We develop structural results and an approximation for the throughput of an assembly system fed by multi-station fabrication lines where releases are governed by the CONWIP protocol and all machines have deterministic processing times but are subject to random outages. This formulation is motivated by a printed circuit board manufacturing process.

We demonstrate that while throughput of such systems is nondecreasing in machine speed, there are cases where throughput declines when mean time between failures (MTBF) increases or mean time to repair (MTTR) decreases. Using the concept of "deterministic steady state," which describes the behavior of the system in die absence of failures, we derive a simple, closed-form approximation for throughput. Comparisons with simulation show that this approximation is robust over a wide range of conditions. Finally, we observe that throughput tends to be higher when the bottleneck is located in fabrication rather than assembly.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.