320
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

A two-dimensional bin packing problem with size changeable items for the production of wind turbine flanges in the open die forging industry

, &
Pages 1332-1344 | Received 01 Dec 2011, Accepted 01 Aug 2012, Published online: 29 Jul 2013
 

Abstract

Efficient cutting design is essential to reduce the costs of production in the open die forging industry. This article discusses a slab cutting design problem that occurs when parallel piped items are cut from raw material steel slabs with varying widths and lengths to meet a volume requirement. The problem is modeled as a two-dimensional cutting stock problem or bin packing problem with size-changeable items. Cut loss and guillotine cut constraints are included. A knapsack-based heuristic algorithm is proposed and it is tested by a real-world manufacturer who is cutting steel for wind turbine flanges. The firm generates an annual cost reduction of approximately US $2000 000.

Acknowledgement

We thank the anonymous referees for their useful comments and suggestions.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.