Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 34, 2017 - Issue 2
601
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Dysregulation of metallothionein and circadian genes in human hepatocellular carcinoma

, , &
Pages 192-202 | Received 04 Sep 2016, Accepted 31 Oct 2016, Published online: 20 Dec 2016
 

ABSTRACT

Hepatocellular carcinoma (HCC) is the major threat to human health, and disruption of circadian clock genes is implicated in hepatocarcinogenesis. This study examined the dysregulation of metallothioneins and circadian genes in achieved human HCC (n = 24), peri-HCC tissues (n = 24) as compared with normal human livers (n = 36). Total RNA was extracted and reverse transcribed. Real-time RT-qPCR was performed to determine the expression of genes of interest. The results demonstrated the downregulation of metallothionein-1 (MT-1), MT-2, and metal transcription factor-1 (MFT-1) in human HCC as compared with Peri-HCC and normal tissues. MTs are a biomarker for HCC and have typical circadian rhythms; the expression of major circadian clock genes was also determined. HCC produced a dramatic decrease in the expression of core clock genes, circadian locomotor output cycles kaput (Clock) and brain and muscle Arnt-like protein 1 (Bmal1), and decreased the expression of the clock feedback control genes, Periods (Per1, Per2) and Cryptochromes (Cry1, Cry2). On the other hand, the expression of clock target genes nuclear orphan receptor factor protein (Nr1d1) and D-box-binding protein (Dbp) was upregulated as compared with Peri-HCC and normal livers. Peri-HCC also had mild alterations in these gene expressions. In summary, the present study clearly demonstrated the dysregulation of MTs and circadian clock genes in human HCC, which could provide the information of targeting MT and circadian clock in HCC management.

Funding

This work is supported by the Chinese National Science Foundation [grant number 81160415], [grant number 81460632].

Additional information

Funding

This work is supported by the Chinese National Science Foundation [grant number 81160415], [grant number 81460632].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.