Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 34, 2017 - Issue 8
645
Views
19
CrossRef citations to date
0
Altmetric
Original Article

Potent synchronization of peripheral circadian clocks by glucocorticoid injections in PER2::LUC-Clock/Clock mice

, , , , , , , , , , & show all
Pages 1067-1082 | Received 22 Feb 2017, Accepted 02 Jun 2017, Published online: 13 Jul 2017
 

ABSTRACT

In mammals, the central clock (the suprachiasmatic nuclei, SCN) is entrained mainly by the light-dark cycle, whereas peripheral clocks in the peripheral tissues are entrained/synchronized by multiple factors, including feeding patterns and endocrine hormones such as glucocorticoids. Clock-mutant mice (Clock/Clock), which have a mutation in a core clock gene, show potent phase resetting in response to light pulses compared with wild-type (WT) mice, owing to the damped and flexible oscillator in the SCN. However, the phase resetting of the peripheral clocks in Clock/Clock mice has not been elucidated. Here, we characterized the peripheral clock gene synchronization in Clock/Clock mice by daily injections of a synthetic glucocorticoid (dexamethasone, DEX) by monitoring in vivo PER2::LUCIFERASE bioluminescence. Compared with WT mice, the Clock/Clock mice showed significantly decreased bioluminescence and peripheral clock rhythms with decreased amplitudes and delayed phases. In addition, the DEX injections increased the amplitudes and advanced the phases. In order to examine the robustness of the internal oscillator, T-cycle experiments involving DEX stimulations with 24- or 30-h intervals were performed. The Clock/Clock mice synchronized to the 30-h T-cycle stimulation, which suggested that the peripheral clocks in the Clock/Clock mice had increased synchronizing ability upon DEX stimulation, to that of circadian and hour-glass type oscillations, because of weak internal clock oscillators.

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Funding

This work was partially supported by the Council for Science, Technology and Innovation, SIP, “Technologies for creating next-generation agriculture, forestry, and fisheries” (funding agency: Bio-oriented Technology Research Advancement Institution, NARO) (S.S.), and by a Grant-in-Aid for Scientific Research (S) (26220201) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (S.S.).

Additional information

Funding

This work was partially supported by the Council for Science, Technology and Innovation, SIP, “Technologies for creating next-generation agriculture, forestry, and fisheries” (funding agency: Bio-oriented Technology Research Advancement Institution, NARO) (S.S.), and by a Grant-in-Aid for Scientific Research (S) (26220201) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (S.S.).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.