Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 35, 2018 - Issue 11
417
Views
8
CrossRef citations to date
0
Altmetric
Case Report

The effect of consecutive transmeridian flights on alertness, sleep–wake cycles and sleepiness: A case study

, ORCID Icon, , , , & show all
Pages 1471-1480 | Received 08 Feb 2018, Accepted 23 Jun 2018, Published online: 11 Jul 2018
 

ABSTRACT

Travel across time zones disrupts circadian rhythms causing increased daytime sleepiness, impaired alertness and sleep disturbance. However, the effect of repeated consecutive transmeridian travel on sleep–wake cycles and circadian dynamics is unknown. The aim of this study was to investigate changes in alertness, sleep–wake schedule and sleepiness and predict circadian and sleep dynamics of an individual undergoing demanding transmeridian travel. A 47-year-old healthy male flew 16 international flights over 12 consecutive days. He maintained a sleep–wake schedule based on Sydney, Australia time (GMT + 10 h). The participant completed a sleep diary and wore an Actiwatch before, during and after the flights. Subjective alertness, fatigue and sleepiness were rated 4 hourly (08:00–00:00), if awake during the flights. A validated physiologically based mathematical model of arousal dynamics was used to further explore the dynamics and compare sleep time predictions with observational data and to estimate circadian phase changes. The participant completed 191 h and 159 736 km of flying and traversed a total of 144 time-zones. Total sleep time during the flights decreased (357.5 min actigraphy; 292.4 min diary) compared to baseline (430.8 min actigraphy; 472.1 min diary), predominately due to restricted sleep opportunities. The daily range of alertness, sleepiness and fatigue increased compared to baseline, with heightened fatigue towards the end of the flight schedule. The arousal dynamics model predicted sleep/wake states during and post travel with 88% and 95% agreement with sleep diary data. The circadian phase predicted a delay of only 34 min over the 16 transmeridian flights. Despite repeated changes in transmeridian travel direction and flight duration, the participant was able to maintain a stable sleep schedule aligned with the Sydney night. Modelling revealed only minor circadian misalignment during the flying period. This was likely due to the transitory time spent in the overseas airports that did not allow for resynchronisation to the new time zone. The robustness of the arousal model in the real-world was demonstrated for the first time using unique transmeridian travel.

Acknowledgement

Maria Comas was a recipient of DVC Research/HMR+ Implementation Fund – MRI University of Sydney SPARC and NEUROSLEEP seed funding.

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.