Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 36, 2019 - Issue 8
218
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Smartphone and a freely available application as a new tool to record locomotor activity rhythm in large mammals and humans

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & show all
Pages 1047-1057 | Received 06 Feb 2019, Accepted 17 Apr 2019, Published online: 15 May 2019
 

ABSTRACT

Daily pattern of locomotor activity (LA), one of the most studied rhythms in humans and rodents, has not been widely investigated in large mammals. This is partly due to the high cost and breakability of used automatic devices. Since last decade, smartphones are becoming ubiquitous. Meanwhile, several applications detecting activity by using internal sensors were made available. In this study, we assumed that this device could be a cheaper and easier way to measure the LA rhythm in humans and large mammals, like camel and goat. A smartphone application (Nokia Mate Health), normally used to quantify physical activities in humans, was chosen for the study. To validate the rhythm data obtained from the smartphone, LA rhythm was simultaneously recorded using an automatic device, the Actiwatch-Mini®. Results showed that the smartphone provided a clear and significant daily rhythm of LA. The visual assessment of the superimposed LA rhythm’s curves in all three species showed that the smartphone application displayed similar rhythms as those recorded by the Actiwatch-Mini. Highly significant positive correlation (p≤ 0.0001) exists between the two recording rhythms. The daily periods were both the same at 24.0 h. Acrophases were also significantly similar and occurring around mid-day: 11:40 ± 0.35 h vs 11:41 ± 0.35 h for the camel, 11:25 ± 0.19 h vs 11:37 ± 0.25 h for the goat and 13:04 ± 0.11 h vs 13:51 ± 0.28 h for humans using smartphone and Actiwatch, respectively. The related mesor and amplitude were also close between the two recording devices. Results indicate clearly that using smartphones constitutes a reliable cheap tool to study LA rhythm for chronobiology studies, especially in laboratories facing lack of funding.

Acknowledgments

Authors thank Professor Mohammed Dehhaoui for his help in conducting statistical procedures.

Disclosure Statement

The authors declare no actual or potential conflict of interest.

Additional information

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.