30
Views
10
CrossRef citations to date
0
Altmetric
Original Article

The Pyruvate Dehydrogenase E1 Alpha Gene Is Testosterone And Prolactin Regulated In Prostate Epithelial Cells

, , &
Pages 23-39 | Published online: 07 Aug 2009
 

Abstract

The prostate gland of humans and other animals has the unique function of accumulating and secreting extraordinarily high levels of citrate. The prostate secretory epithelial cells synthesize citrate which, due to a limiting mitochondrial (m-) aconitase, accumulates rather than being oxidized. Thus citrate is essentially an end product of metabolism in prostate. For continued net citrate production, a continual source of oxaloacetate (OAA) and acetyl CoA is required. Glucose via pyruvate oxidation provides the source of Acetyl CoA. In prostate cells, citrate production is regulated by testosterone and/or by prolactin. Both hormones selectively regulate the level and activity of pyruvate dehydrogenase E1 alpha (E1 a) in animal prostate cells; thereby regulating the availability of acetyl CoA for citrate synthesis. Studies were conducted to determine if testosterone and prolactin might regulate the expression of the E1a gene in prostate epithelial cells. Prolactin treatment of rat ventral and lateral prostate cells and human PC3 cells increased the levels of E1a mRNA and the rates of transcription of the E1a gene. Testosterone also increased the mRNA level and transcription of E1a in rat ventral prostate cells, and in PC3 cells transfected with androgen receptor. However, testosterone treatment resulted in a repression of E1a gene expression in lateral prostate cells. Evidence is presented which supports the view that prolactin regulation of E1a is mediated via PKC. The rapidity of the effects of both hormones is representative of an immediate-early gene response. To our knowledge this represents the first report in any mammalian cells that, in addition to its constitutive expression in all mammalian cells, the E1a gene is a hormonally-regulated gene in specifically targeted prostate epithelial cells.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.