Publication Cover
Australian Journal of Earth Sciences
An International Geoscience Journal of the Geological Society of Australia
Volume 53, 2006 - Issue 4
113
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Phreatomagmatic boulder conglomerates at the tip of the ca 2772 Ma Black Range dolerite dyke, Pilbara Craton, Western Australia

, &
Pages 617-630 | Received 23 Feb 2005, Accepted 08 Feb 2006, Published online: 02 Feb 2007
 

Abstract

Unusual volcanic conglomerates with a mixture of well-rounded granitic boulders (to 1.2 m diameter) derived from adjacent basement rocks, and smaller (1 – 10 cm) subspherical basaltic droplets with chilled margins occupy a linear zone along strike of the northern end of the Late Archaean Black Range dolerite dyke in the Pilbara Craton, Western Australia. The matrix of the volcanic conglomerates becomes more angular with decreasing grainsize and grades to rock flour, a trend opposite to that in sedimentary conglomerates. In other places, the matrix consists of chlorite that cuts through, and resorbs, granitic clasts, indicating an origin as volcanic melt. The volcanic conglomerates have peperitic contacts with immediately adjacent flows of the Mt Roe Basalt of the Fortescue Group. A welded volcanic tuff at the peperitic contact is dated at 2767 ± 3 Ma, within error of the 2772 ± 2 Ma Black Range dolerite dyke and the Mt Roe Basalt (2775 ± 10 Ma), confirming the contemporaneity of formation of these geological elements. Subsequent normal faulting has juxtaposed the higher level conglomerates down into their present exposure level along strike of the Black Range dolerite dyke. The linear zone of volcanic conglomerates is interpreted to represent a phreatomagmatic pebble dyke that formed immediately above, and as a result of intrusion of, the Black Range dolerite dyke. Interaction of magma with groundwater caused phreatomagmatic brecciation of the country rock, in situ milling of granitic boulders, incorporation of basaltic melt droplets, and the formation of a mixed matrix of devitrified volcanic glass and granitic material. This process was accompanied by along-strike epithermal Cu – Hg – Au mineralisation.

Acknowledgements

Comments by Ian Tyler, Arthur Hickman and Franco Pirajno are acknowledged. Journal reviews by S. Allen and an anonymous reviewer greatly helped clarify aspects of the paper. This paper is published with permission of the Director, Geological Survey of Western Australia.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.