Publication Cover
Australian Journal of Earth Sciences
An International Geoscience Journal of the Geological Society of Australia
Volume 54, 2007 - Issue 5
254
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Basement controls on fault development in the Penola Trough, Otway Basin, and implications for fault-bounded hydrocarbon traps

, , &
Pages 675-689 | Received 24 Dec 2005, Accepted 13 Jan 2007, Published online: 18 Aug 2010
 

Abstract

The Penola Trough is an intensely faulted northwest – southeast-trending half-graben structure. It is bound to the south by the major listric Hungerford/Kalangadoo Fault system. Several large prominent faults observed in the Penola Trough show offset of basement at depth. These basement-rooted faults have exerted significant controls on the geometry of smaller intra-rift faults throughout the entire structural history of the area. Faulting of the basement was initiated during the initial rift event of the Late Jurassic – Early Cretaceous. Faulting first propagated through a pre-existing basement fabric oblique to the north – south extension direction prevalent during this time. This resulted in the formation of the Hungerford/Kalangadoo and St George Faults with a northwest – southeast and north-northeast – south-southwest trend, respectively. A series of east – west-trending basement faults subsequently initiated perpendicular to the north – south extension direction as extensional strain increased in magnitude. Significant displacement along these basement-rooted faults throughout the initial rift event was associated with the formation of a complex set of intra-rift faults. These intra-rift faults exhibit a broadly east – west orientation consistent with the interpreted north – south extensional direction. However, this east – west orientation locally deviates to a more northwest – southeast direction near the oblique-trending St George Fault, attributed to stress perturbation effects. Many of the intra-rift faults die out prior to the end of the Early Cretaceous initial rift event while displacement on basement faults continued throughout. Faulting activity during the Late Cretaceous post-rift fault event was almost exclusively localised onto basement faults, despite a significant change in extension direction to northeast – southwest. A high-density, en échelon array of northwest – southeast-trending fault segments formed directly above the St George Fault and the large east – west-trending basement faults contemporaneously reactivated. Seismic variance data show that post-rift fault segments that are hard-linked to the St George Fault at depth have propagated through near-surface units. Non-basement-linked post-rift fault segments that lie away from the St George basement have not. This suggests that recent fault activity has continued to occur preferentially along basement faults up to relatively recent times, which has significant implications for fault seal integrity in the area. This is empirically validated by our structural analysis of fault-dependent hydrocarbon traps in the area, which shows that partially breached or breached hydrocarbon columns are associated with basement faults, whereas unbreached hydrocarbon columns are not.

Acknowledgements

Mike Dentith and Doug Finlayson are thanked for their constructive reviews. Origin Energy and its joint venture partners are thanked for the provision of 3D seismic data and their excellent collaboration on this project. Conrad Childs and fellow researchers at Fault Analysis Group, University College, Dublin are greatly thanked also for their constructive comments that helped shape this paper. All staff and students at the Australian School of Petroleum, University of Adelaide, are thanked for advice, guidance, and sharing of technical expertise. Schlumberger Oilfield Services and Badleys are thanked for the provision of their software.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.