Publication Cover
Australian Journal of Earth Sciences
An International Geoscience Journal of the Geological Society of Australia
Volume 70, 2023 - Issue 3
223
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Oldest syenitic intrusions of the Yilgarn Craton identified at Karari gold deposit, Carosue Dam camp, Western Australia?

, , &
Pages 344-357 | Received 30 Mar 2022, Accepted 24 Oct 2022, Published online: 23 Jan 2023
 

Abstract

Apatite was separated from four samples of syenite porphyry, taken from the Karari gold deposit, in the Kurnalpi Terrane of the Archean Kalgoorlie-Kurnalpi Rift, Eastern Goldfields Superterrane (EGST). The alkalic composition of the syenitic magmas inhibited zircon crystallisation, so apatite provided the best mineral for geochronological investigations. LA-ICP-MS analysis of U, Th and Pb isotopes in the apatite gave a relatively wide range of lower intercept ages, with large errors, ranging from 1 to 3%, using OD-306 apatite as the primary standard. Cathodoluminescent (CL)-darker cores that comprise the major volume of apatite grains are relatively homogeneous in two samples, with one having clear oscillatory zoning. These samples yielded intercept ages of 2701 ± 34 Ma and 2699 ± 25 Ma, respectively. These ages are interpreted to approximate the magmatic crystallisation age of the apatite. Younger intercept ages were generated by apatite from two other samples, which display more complex and heterogeneous patterns of CL brightness. The apatite ages from these two samples are interpreted to have been produced by integrated analysis of apatite that has been heterogeneously modified by younger events. However, the magnitude of the temporal gap between magma emplacement and closure of the U–Pb system in apatite from these two samples remains unknown. Our best estimate of the age of the magmatic apatite from at least two of the syenitic intrusions at Karari is ca 2.70 Ga, which identifies these as the oldest intrusions of the Syenitic Group of magmas yet identified in the EGST. However, if ages are corrected to offset observed in the 401 apatite secondary standard, the two oldest syenitic intrusions are dated at ca 2660 Ma.

Key Points

  •  Syenite porphyry intrusions are spatially associated with gold mineralisation at Karari, gold deposit, WA.

  •  Apatite in the syenite porphyry intrusions has been used to determine the age of the intrusions in these zircon-poor rocks.

  •  LA-ICP-MS analysis of U–Pb isotopes from two intrusions produce apatite ages that are interpreted to approximate the age of magmatic crystallisation.

  •  The interpreted magmatic dates are older than any previously dated syenitic intrusions in the Kalgoorlie-Kurnalpi Rift.

Acknowledgements

The authors acknowledge the facilities, and the scientific and technical assistance of Microscopy Australia at the Centre for Microscopy, Characterisation & Analysis, University of Western Australia, a facility funded by the University, State and Commonwealth Governments. The advice of Guillaume Pirot, and insightful comments of journal reviewer, Antony Burnham, are much appreciated.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

W. Witt acknowledges the financial and logistic support of Saracen Gold Mines Pty Ltd (now Northern Star Resources), for the Saracen-CET Project to study the origin of the Karari–Whirling Dervish gold deposit.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.