Publication Cover
Immunological Investigations
A Journal of Molecular and Cellular Immunology
Volume 37, 2008 - Issue 7
131
Views
20
CrossRef citations to date
0
Altmetric
Original

Retinoid Acid Inhibits IL-1-Induced iNOS, COX-2 and Chemokine Production in Human Chondrocytes

, , , , , , & show all
Pages 675-693 | Published online: 07 Jul 2009
 

Abstract

This study aims to investigate the effects and mechanisms of all-trans retinoic acid (t-RA) on interleukin(IL)-1-induced production of several inflammatory mediators in human chondrocytes. The cartilage from OA patients receiving total knee or total hip replacement was obtained and chondrocytes were prepared. Chemokine concentrations were measured by ELISA. The expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) was determined by Western blotting and/or RT/PCR. Nitrite levels were measured by Griess assays. The DNA-binding activity and transcriptional activity of activator protein-1 (AP-1) were measured by electrophoresis mobility shift assay and luciferase assay. We showed that t-RA suppressed IL-1-induced release of chemokines, including regulated upon activation, normal T cell expressed and secreted (RANTES), monocyte chemoattractant protein 2 (MCP-2), macrophage inflammatory protein-1alpha (MIP-1α) and MIP-1β. Four different retinoid derivatives all preserved inhibitory effects albeit the potency was different. t-RA potently suppressed IL-1-induced expression of iNOS and COX-2 and production of nitric oxide and prostaglandin E2. In consistent with the results in primary chondrocytes, t-RA down-regulated IL-1-induced AP-1 DNA binding activity and transcriptional activity in a human fibroblast-like (commercially labeled as chondrocyte) cell line. By examining the effect of a c-jun N-terminal kinase (JNK) specific inhibitor, we showed that the suppression of JNK-AP-1 signaling was enough to inhibit IL-1-induced production of chemokines and activation of iNOS and COX-2 pathways. Collectively, our results raise a therapeutic option that intra-articular administration of retinoid derivatives at 10–1000 nanomolar concentrations may be effective to suppress the progression of inflammatory OA.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.