Publication Cover
Immunological Investigations
A Journal of Molecular and Cellular Immunology
Volume 52, 2023 - Issue 4
161
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Promoted Generation of T Helper 1-Like Regulatory T Cells After Transient Middle Cerebral Artery Occlusion in Type-2 Diabetic Mice

, , &
Pages 482-498 | Received 04 Oct 2022, Accepted 09 Jan 2023, Published online: 19 Apr 2023
 

ABSTRACT

Background

Regulatory T cells (Tregs) play a remarkable role in modulating post-ischemic neuroinflammation. However, the characteristics of Tregs in diabetic ischemic stroke remain unknown.

Methods

Transient middle cerebral artery occlusion (MCAO) was conducted on leptin receptor-mutated db/db mice and db/+ mice. The number, cytokine production, and signaling features of Tregs in peripheral blood and ipsilateral hemispheres were evaluated by flow cytometry. Treg plasticity was assessed by the adoptive transfer of splenic Tregs into mice. The effect of ipsilateral macrophages/microglia on Treg plasticity was determined by in vitro co-culture analysis.

Results

db/db mice had more infiltrating Tregs in their ipsilateral hemispheres than db/+ mice. Infiltrating Tregs in db/db mice expressed higher transforming growth factor-β (TGF-β), interleukin-10 (IL-10), forkhead box P3 (Foxp3), interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and T-box expressed in T cells (T-bet) in comparison to infiltrating Tregs in db/+ mice, suggesting promoted generation of T helper 1 (Th1)-like Tregs in the brains of db/db mice after stroke. The post-ischemic brain microenvironment of db/db mice significantly up-regulated IFN-γ, TNF-α, T-bet, IL-10, and TGF-β in infiltrating Tregs. Moreover, ipsilateral macrophages/microglia remarkably enhanced the expression of IFN-γ, TNF-α, and T-bet but not IL-10 and TGF-β in Tregs. db/db macrophages/microglia were more potent in up-regulating IFN-γ, TNF-α, and T-bet than db/+ macrophages/microglia. Interleukin-12 (IL-12) blockage partially abolished the modulatory effect of macrophages/microglia on Tregs.

Conclusion

The generation of Th1-like Tregs was promoted in the brains of type 2 diabetic mice after stroke. Our study reveals significant Treg plasticity in diabetic stroke.

Abbreviations: Foxp3: forkhead box P3; IFN-γ: interferon-γ; IL-10: interleukin-10; IL-12: interleukin-12; MCAO: middle cerebral artery occlusion; PBS: phosphate-buffered saline; STAT1: Signal transducer and activator of transcription 1; STAT5: Signal transducer and activator of transcription 1; T-bet: T-box expressed in T cells; TGF-β: transforming growth factor-β; Th1: T helper 1; TNF-α: tumor necrosis factor-α; Tregs: regulatory T cells. Foxp3: forkhead box P3; IFN-γ: interferon-γ; IL-10: interleukin-10; IL-12: interleukin-12; MCAO: middle cerebral artery occlusion; PBS: phosphate-buffered saline; STAT1: Signal transducer and activator of transcription 1; STAT5: Signal transducer and activator of transcription 1; T-bet: T-box expressed in T cells; TGF-β: transforming growth factor-β; Th1: T helper 1; TNF-α: tumor necrosis factor-α; Tregs: regulatory T cells.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability statement

The data that support the findings of this study are available from the corresponding author, [L.S.], upon reasonable request.

Supplementary material

Supplemental data for this article can be accessed online at https://doi.org/10.1080/08820139.2023.2197009

Additional information

Funding

This study was supported by the Natural Science Foundation of Hubei Province (Grant# WJ2017×020).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.