957
Views
51
CrossRef citations to date
0
Altmetric
Original Articles

Vacuum Carbothermic Reduction of Al2O3, BeO, MgO-CaO, TiO2, ZrO2, HfO2 + ZrO2, SiO2, SiO2 + Fe2O3, and GeO2 to the Metals. A Thermodynamic Study

, &
Pages 247-266 | Published online: 21 Jun 2011
 

Abstract

Thermochemical equilibrium calculations are carried out to elucidate improved conditions for the production of Al, Si, FeSi, Ti, Mg, Hf, Zr, Be, and Ge by the high-temperature carbothermic reduction of their oxides, and for the production of Mg by the silicothermic reduction of MgO–CaO. The onset temperature for the formation of free Al, Be, Si, Ti, Mg, Hf, and Zr in the gas phase is considerably lowered by decreasing the total pressure, enabling their vacuum distillation. An important prediction of vacuum operation is the suppression of undesired by-products, such as Al-carbide, Al4C3, and the Al-oxycarbides Al2OC and Al4O4C. These species considerably interfere in the carbothermic Al production at an ambient pressure, as shown in preliminary experiments using induction furnace irradiation. CO coproduced in these reactions may be water-gas shifted to syngas and further processed to hydrogen and liquid fuels.

Notes

a Taking the HHV of graphite, 393.5 kJ/mol, as representative of coke.

b Theoretical process heat for changing equilibrium composition from 300 K to 1800 K at 1 bar.

c Theoretical work for isothermal expansion at 1800 K of product gases from 1 bar to 10−4 bar.

d Fuel assumes coke or coal for process heat.

e Assume 90% chemical yield of methanol from syngas.

Note: By partial WGS (water-gas shift) of CO to H2, a syngas of molar ratio H2/CO = 2 may be obtained and converted to methanol.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.