330
Views
14
CrossRef citations to date
0
Altmetric
Articles

Phosphorus Removal and Iron Recovery from High-Phosphorus Hematite Using Direct Reduction Followed by Melting Separation

, &
 

ABSTRACT

To efficiently utilize high-phosphorus oolitic hematite resources, a method using direct reduction followed by melting separation was proposed. In this study, direct reduction behavior of the ore–char briquette and the melting separation behavior of the reduced briquette were investigated. Direct reduction test results show that under investigated conditions, the briquette reached a metallization rate of 80%–88% and a residual carbon value of 0.11–4.85 wt%,and apatite layers were fragmented into tiny particles, some of which were embedded in metallic iron phase. Melting separation test results show that residual carbon can significantly influence the iron recovery rate. For metallic briquettes with the abovementioned qualities, the iron recovery rate ranged from 75% to 98%. To control the phosphorus content in molten iron to be nearly 0.4 wt%, an iron recovery rate of 80% was shown to be adequate.

Funding

The authors acknowledge the financial support provided from the National Natural Science Foundation of China under Project No. 51144010.

Additional information

Funding

The authors acknowledge the financial support provided from the National Natural Science Foundation of China under Project No. 51144010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.