211
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Specifically Adsorbed Ions in the Reverse Cationic Flotation of Iron Ore

, , &
 

ABSTRACT

Although extensive research has been conducted on the effect of water chemistry in flotation, no single study exists which describes the effect of calcium and magnesium on the adsorption of starch onto the hematite in iron ore flotation. In this work flotation, entrainment, zeta potential, and settling tests were performed to determine the differing impact of calcium and magnesium in iron ore flotation. Results showed that magnesium is more detrimental to the flotation process at far lower concentrations than calcium. Performing flotation with 45 ppm of calcium resulted in a comparable impact on the process as performing flotation with 7 ppm of magnesium. While calcium promotes the adsorption of starch onto the hematite and reduces entrainment, past an optimal dosage magnesium is promoting the adsorption of starch to everything in solution causing low grades and recoveries. It was found that the starch adsorption onto the hematite is strongly impacted by the presence of magnesium, suggesting that starch is collecting the magnesium and self-flocculating prior to adsorption onto the hematite. Thus, the presence of magnesium can significantly reduce the flotation performance far more than what would be expected from calcium.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.