469
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Redox-sensitive transcription factors play a significant role in the development of rheumatoid arthritis

, & ORCID Icon
Pages 129-143 | Received 29 Jan 2017, Accepted 31 Jul 2017, Published online: 12 Sep 2017
 

ABSTRACT

Rheumatoid arthritis (RA) is a chronic autoimmune disease which is associated with significant morbidity. Redox sensitive transcription factors including NF-κB, HIF, AP-1, and Nrf2 are intimately involved in the pathogenesis of RA. The treatment of this disease is limited by the elusive nature of the pathogenesis of RA. NF-κB is crucial for the maturation of immune cells as well as production of TNFα and MMPs, which escalate RA. HIF is essential for activation of inflammatory cells, angiogenesis and pannus formation in RA. AP-1 regulates cytokine and MMP production as well as synovial hyperplasia which are key processes in RA. Nrf2 is involved with chondrogenesis, osteoblastogenesis, prostaglandin secretion and ROS production in RA. Targeting two or more of these transcription factors may result in increased efficacy than either therapy in isolation. This review will highlight the control specific mediators on these transcription factors, the subsequent effect of these transcription factors once activated, and then mesh this with the pathogenesis of RA. The elucidation of key transcription factor regulation in the pathogenesis of RA may highlight the novel therapy interventions which may prove to have a greater efficacy than those therapies currently available.

Acknowledgements

The authors would like to thank Arthritis Australia (The HJ & GJ McKenzie Grant 2015) and AITHM for funding this project.

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the article.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.