65
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

A neural network based approach for measurement dynamics compensation

Pages 423-442 | Published online: 30 Nov 2010
 

In this article a task-oriented neural network (NN) solution is proposed for the problem of article recovering real process outputs from available distorted measurements. It is shown that a neural network can be used as approximator of inverted first-order measurement dynamics with and without time delay. The trained NN is connected in series with the sensor, resulting in an identity mapping between the inputs and the outputs of the composed system. In this way the network acts as a software mechanism to compensate for the existing dynamics of the whole measurement system and recover the actual process output. For those cases where changes in the measurement system occur, a multiple concurrent-NN recovering scheme is proposed. This requires a periodical path-finding calibration to be performed. A procedure for such a calibration purpose has also been developed, implemented, and tested. It is shown that it brings adequate robustness to the overall compensation scheme. Results showing the performance of both the NN compensator and the calibration procedure are presented for closed loop system operation.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.