1,770
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Energy Efficient Cluster Head Selection in Internet of Things Using Minimum Spanning Tree (EEMST)

, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1777-1802 | Received 10 Sep 2020, Accepted 07 Oct 2021, Published online: 24 Oct 2021
 

ABSTRACT

Internet of things network lifetime and energy issues are some of the most important challenges in today’s smart world. Clustering would be an effective solution to this, as all nodes would be arranged into virtual clusters, while one node will serve as the cluster head. The right selection of the cluster head will reduce energy consumption dramatically. This concept is more crucial for the internet of things, which is being widely distributed in environments such as forests or the smart agriculture sector. In this paper, an Energy Efficient Minimum Spanning Tree algorithm (EEMST) is presented to select the optimal cluster head and data routing based on graph theory for a multihop Internet of Things. This algorithm calculates the Euclidean distance-based minimum spanning tree based on a weighted graph. As a result, we use a weighted minimum spanning tree to choose the optimal cluster head and accordingly determine the shortest path for data transmission between member nodes and the cluster head. The proposed EEMST algorithm provides the possibility of intracluster multihop routing and also the possibility of intercluster single-hop routing. The simulated experimental results approve a significant improvement of the proposed algorithm in the IoT systems’ lifetime compared to the baselines.

Disclosure Statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.