145
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

On Computational Issues in Large Deformation Analysis of Rubber BushingsFootnote*

&
Pages 287-309 | Received 01 Oct 1996, Published online: 03 Apr 2007
 

ABSTRACT

Accurate bushing analysis requires a locking free finite element formulation, an appropriate selection of the strain energy density function, and an adequate use of bulk modulus to assure numerical stability and accuracy. In this paper, the pressure projection finite element method is employed. The method projects displacement-calculated pressure onto a lower order pressure field, based on the Babuska-Brezzi condition, to avoid volumetric locking and pressure oscillation. Mooney-Rivlin and Cubic strain energy density functions are used to study the material effect on the predicted rubber behavior in tension-compression and shear deformation modes, and the need to use a higher order strain energy density function for bushing analysis is identified. The effect of bulk modulus on bonded rubber behavior in bushings with respect to bushing shape factor is studied, and the minimum allowable bulk modulus to impose incompressibility in bushing analysis is characterized. The load-deflection response of annular bushings subjected to axial, torsional, and radial deformations are analyzed and results are compared to linear approximations. An effort is made to demonstrate how a Mooney-Rivlin model cannot capture load-displacement nonlinearities in bushing axial and torsional deformations. Two- and three-dimensional results are compared and the applicability of two-dimensional analysis is discussed.

Notes

*Communicated by E. J. Haug

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.