Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 29, 2016 - Issue 3
932
Views
11
CrossRef citations to date
0
Altmetric
Articles

Effect of Heating Position on Thermal Energy Storage in Cavity With/Without Open-cell Metallic Foams

&
Pages 355-377 | Received 10 Oct 2014, Accepted 03 Nov 2014, Published online: 21 Feb 2016
 

Abstract

Thermal energy storage systems inherently store heat at different heating positions. In other words, the heat storage performance changes depending on the heating positions. In this study, the effects of the heating surface position and reinforcement of the open-cell metal foam on the phase change material melting fraction were experimentally investigated. For this purpose, a small-scale rectangular cube was made of plexiglass having a volume of 274 cm3. One of the surfaces of the cube was heated with a constant heat flux, whereas other surfaces were isolated from the room temperature in the environment. Three different constant heat fluxes were applied on the bottom, top, and side surfaces of the cube in the experiments. Paraffin (n-heptacosane), with a phase change point at 59°C–61°C and as phase change material with a rapid heat charge/discharge, was used in the thermal energy storage system. Depending on the heating position and surface heat flux, it was observed that the effect of natural convection significantly increased within the liquid phase change material. Additionally, the results indicate that the presence of metal foams can enhance the heat transfer rate of phase change materials. According to the sensitivity analysis, the effect of independent parameters on the melting ratio of the phase change material was listed in order of importance as time, surface heat flux, heating position, and metallic foam.

Funding

The authors are grateful for the financial support of the Scientific Research Project Unit of Hitit University (MUH03.11.002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.