Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 32, 2019 - Issue 4
140
Views
17
CrossRef citations to date
0
Altmetric
Articles

Experimental quantification of natural convective heat transfer within annulus space filled with a H2O-Cu nanofluid saturated porous medium. Application to electronics cooling

ORCID Icon &
Pages 364-375 | Received 21 Jun 2018, Accepted 14 Sep 2018, Published online: 16 Oct 2018
 

ABSTRACT

This experimental study deals with cooling electronics contained in a hemispherical cavity whose cupola is maintained isothermal, being its base inclined at an angle varying from 0° (horizontal disc with the cupola oriented upwards) to 135°. The active component is a dome centered on this base. The space between the differentially heated elements of the assembly is filled with a porous medium of high porosity saturated by a water–copper nanofluid whose volume fraction varies between 0% (pure water) and 7%. The Rayleigh number based on the radius of the cupola reaches high values up to 7.29 × 1010 given the important surface heat flux generated by the device during operation. The ratio between the thermal conductivity of the solid matrix and that of the base fluid ranges between 0 (interstitial volume without porous medium) and 41.4 corresponding to the intended applications. This experimental study done with an industrial prototype at scale 1 quantifies the natural convective heat transfer via the Nusselt number determined for many configurations obtained by varying the solid-fluid thermal conductivity ratio, the inclination angle, the Rayleigh number, and the volume fraction. The study clearly shows that the cooling performance of the Cu-H2O nanofluid degrades with its age and the number of times it has been used. Analysis of the results reproducibility also proves the irreversibility of the performance. The measured values were compared with those obtained in a recent numerical study based on the volume control method. The observed deviations taking into account the experimental uncertainty margins validate the mathematical model implemented in the numerical approach.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.