207
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

LncRNA ZNF667-AS1 alleviates rheumatoid arthritis by sponging miR-523-3p and inactivating the JAK/STAT signalling pathway

, , , , , , , , & show all
Pages 406-414 | Received 01 Jun 2021, Accepted 08 Aug 2021, Published online: 23 Aug 2021
 

Abstract

Background

Rheumatoid arthritis (RA) is an autoimmune disease, which compromises the synovial membrane resulting in chronic inflammation. Increasing evidence has demonstrated that long non-coding RNAs (lncRNAs) are implicated in the pathogenesis of RA. This study investigated the role of lncRNA ZNF667-AS1 in RA progression.

Methods

Synovial tissues and fibroblast-like synoviocytes (FLSs) were obtained from patients with RA. Gene expression was measured using RT-qPCR. Chondrocytes were treated with lipopolysaccharide (LPS) to establish in vitro models of OA. Cell counting kit-8 (CCK-8), western blot, and enzyme-linked immunosorbent assay (ELISA) were used to examine the proliferation and inflammatory cytokine production in chondrocytes. Animal models of OA were established in SD rats. Peripheral blood mononuclear cells (PBMCs) were isolated from the OA rats. Flow cytometry was used to measure the changes of the inflammatory T-helper cell 17 (Th17) cells. The relationship between ZNF667-AS1 and miR-523-3p was verified by luciferase reporter assay.

Results

ZNF667-AS1 was downregulated in RA-FLSs and LPS-stimulated chondrocytes. ZNF667-AS1 overexpression significantly promoted cell proliferation and inhibited the production of IL-6, IL-17 and TNF-α in LPS-stimulated chondrocytes. Additionally, ZNF667-AS1 overexpression reduced the generation of CD4 + IL-17+ cells. In mechanism, ZNF667-AS1 acted a sponge for miR-523-3p. MiR-523-3p overexpression reversed the ZNF667-AS1-mediated regulation of cell proliferation and inflammation. Furthermore, miR-523-3p overexpression abolished the inhibitory effects of ZNF667-AS1 on the JAK/STAT signalling activation.

Conclusion

ZNF667-AS1 exerts protective effects during RA development by sponging miR-523-3p and inactivating the JAK/STAT signalling.

Acknowledgement

The authors thank all participators for their help.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.