338
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

MiR-144-3p induced by SP1 promotes IL-1β-induced pyroptosis in chondrocytes via PTEN/PINK1/Parkin axis

, , &
Pages 21-31 | Received 28 Jun 2021, Accepted 19 Sep 2021, Published online: 03 Nov 2021
 

Abstract

Rheumatoid arthritis (RA) often leads to functional disabilities and deformities. MiRNA plays a vital role in cell pyroptosis. Nevertheless, the function and underlying mechanism of miR-144-3p in pyroptosis during the progression of RA remains unclear. In this study, N1511 cells were stimulated with IL-1β to construct a RA model. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay was performed to assess the cell viability. Cell pyroptosis was detected by flow cytometry. The levels of inflammatory cytokines (TNF-α, IL-6, and IL-18) were assessed by enzyme-linked immunosorbent assay (ELISA). The relationship among specific protein 1 (SP1), microRNA-144-3p (miR-144-3p), and phosphatase and tensin homolog (PTEN) was explored by dual-luciferase reporter assay, RNA immunoprecipitation (RIP), and chromatin immunoprecipitation (ChIP), respectively. The level of miR-144-3p in N1511 cells was upregulated by IL-1β. MiR-144-3p knockdown inhibited IL-1β-induced pyroptosis in N1511 cells, and the expressions of NOD-like receptor family pyrin domain containing 3 (NLRP3), Cleaved caspase-1, Gasdermin D (GSDMD), and Cleaved caspase-3 in IL-1β-stimulated N1511 cells were increased. The levels of inflammatory cytokines in N1511 cells were increased by IL-1β, which were restored by miR-144-3p knockdown. MiR-144-3p knockdown abolished IL-1β-induced inactivation of putative kinase 1 (PINK1)/Parkin RBR E3 ubiquitin-protein (Parkin) signalling. Moreover, transcription factor SP1 could upregulate miR-144-3p expression and miR-144-3p negatively regulated PTEN expression. In summary, MiR-144-3p induced by SP1 could promote IL-1β-induced chondrocyte pyroptosis via inhibiting PTEN expression and suppressing the activation of PINK1/Parkin signalling, which provided a new strategy against RA.

Acknowledgement

We would like to give our sincere gratitude to the reviewers for their constructive comments.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability statement

All data generated or analyzed during this study are included in this article. The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Additional information

Funding

This work was financially supported by Study on the Mechanism of MiRNA-144/BMP2 Function Axis on the Function of RA Articular Chondrocytes and the Synthesis of Extracellular Matrix, the scientific research project of Hunan Provincial Health Commission under Grant [20200050].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.