105
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Circ_0003645 serves as miR-335-5p sponge to promote the biological process of diffuse large B-cell lymphoma by upregulating NFIB

, , &
Pages 127-135 | Received 22 Oct 2021, Accepted 26 Dec 2021, Published online: 08 Jan 2022
 

Abstract

Background

Circular RNAs (circRNAs) are critical regulators for the development of many tumours, including diffuse large B-cell lymphoma (DLBCL). However, the role and mechanism of circ_0003645 in DLBCL progression remains obscure.

Methods

Quantitative real-time PCR was performed to measure the expression of circ_0003645, microRNA (miR)-335-5p and nuclear factor I/B (NFIB). Cell viability, apoptosis and cell cycle were measured by cell counting kit 8 assay and flow cytometry. Protein expression was assessed using western blot analysis, and cell glycolysis was evaluated by detecting glucose consumption and ATP/ADP ratios. Besides, dual-luciferase reporter assay and RIP assay were used to confirm RNA interaction.

Results

Our data showed that circ_0003645 expression was significantly upregulated in DLBCL tumour tissues. After circ_0003645 knockdown, the viability, cell cycle and glycolysis of DLBCL cells were inhibited, while cell apoptosis was promoted. MiR-335-5p could be sponged by circ_0003645, and NFIB was confirmed to be a downstream target of miR-335-5p. Function analysis revealed that anti-miR-335-5p reversed the regulation of si-circ_0003645 on DLBCL cell progression, and NFIB overexpression also abolished miR-335-5p-mediated the biological functions of DLBCL cells.

Conclusion

The present study revealed that circ_0003645 promoted the proliferation and glycolysis of DLBCL cells by the miR-335-5p/NFIB axis, which might provide a novel insight for DLBCL treatment.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This study was supported by the Natural Science Foundation of Fujian Province [NO. 2020J011303 and 2020J011299] and Zhangzhou Natural Science Foundation Project [NO.ZZ020J05].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.