44
Views
8
CrossRef citations to date
0
Altmetric
Research Article

T Cell Tolerance Induced by Histone Deacetylase Inhibitor is Mediated by P21cip1

, , &
Pages 545-564 | Published online: 08 Oct 2008
 

Abstract

MEB [n-butyrate 2-(4-morpholinyl) ethyl butyrate hydrochloride], a histone deacetylase inhibitor and G1 blocker, has been shown to induce unresponsiveness in antigen-activated Th1 cells. MEB was tested for here for its ability to inactivate naive alloantigen-specific T cells from DBA/2 and C57BL/10 mice. Since T cells from these two strains of mice have been shown to differ in their cell cycle regulation, it we hoped that this comparison would provide information concerning the role of cycle regulatory proteins in mediating MEB-induced T cell unresponsiveness. MEB inhibited proliferation in a one-way mixed lymphocyte reaction (MLR) in which spleen cells from DBA/2 mice (H-2d) or C57BL/10 mice (H-2b) were stimulated with spleen cells from C57BL/10 or DBA/2 mice, respectively. C57BL/10 responder T cells isolated from the MEB-treated primary MLR remained unresponsive to alloantigen following restimulation in a secondary MLR that did not contain MEB. T cells from DBA/2 mice were less sensitive to MEB-induced unresponsiveness and required a longer exposure or pretreatment with IL-2 to become tolerant. In all cases responsiveness to MEB-induced tolerance in the alloantigen-stimulated T cells corresponded with the levels of the cyclin-dependent kinase inhibitor p21cip1. Additional experiments showed that T cells from p21cip1-deficient mice, unlike T cells from p21cip1 wild-type littermates, were resistant to MEB-induced tolerance. These results underscore the role of p21cip1 in mediating T cell tolerance induced by the histone deacetylase inhibitor MEB.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.