146
Views
2
CrossRef citations to date
0
Altmetric
Original Article

Ketamine delays progression of oxidative and damaged cataract through regulating HMGB-1/NF-κB in lens epithelial cells

, , , , , & show all
Pages 303-308 | Received 15 Dec 2017, Accepted 15 Apr 2018, Published online: 15 Aug 2018
 

Abstract

Objective: Lens epithelial cell (LEC) membrane damage is one of the pathogenesis of cataract. High mobility group box-1 (HMGB-1) and nuclear factor-κB (NF-κB) play vital roles in a variety of diseases, such as inflammation. Ketamine has numerous pharmacological effects that can inhibit inflammation. However, its role in cataract rats LECs has not yet been elucidated.

Materials and methods: LECs were isolated from SD rats and cultured in vitro. The cells were randomly divided into three groups, including the control group, cataract model group induced by H2O2, and ketamine group treated by 10 mM ketamine under H2O2 environment. LECs proliferation was assessed by MTT assay. LECs apoptosis was evaluated by Caspase-3 activity detection. NF-κB mRNA and protein expressions were tested by real-time PCR and Western blot. HMGB-1 expressions in cells and supernatant were detected by real-time PCR and ELISA. TNF-α and IL-1β secretions were detected by ELISA.

Results: In H2O2 model group, the LECs proliferation was significantly inhibited, the caspase-3 activity significantly increased, HMGB-1 mRNA and secretion significantly enhanced, NF-κB mRNA and protein levels significantly elevated, compared to the Control group (p < .05). While the TNF-α and IL-1β secretions significantly up-regulated in H2O2 model group compared to the Control group (p < .05). Ketamine significantly promoted the LECs proliferation, significantly reduced the caspase-3 activity, and significantly declined the HMGB expression compared to H2O2 model group (p < .05). The NF-κB mRNA and protein levels were significantly decreased, TNF-α and IL-1β secretions were significantly decreased in the Ketamine group compared with the model group (p < .05).

Conclusions: Ketamine delays the progression of oxidative and damaged cataract by regulating HMGB-1/NF-κB expression, inhibiting TNF-α, IL-1β, and apoptosis, and promoting cell proliferation.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by Zhejiang Science and Technology Program of Traditional Chinese Medicine [No. 2017ZQ014].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.