312
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Role of angiotensin II type 1 (AT1) and type 2 (AT2) receptors in airway reactivity and inflammation in an allergic mouse model of asthma

, , , , &
Pages 428-437 | Received 01 Feb 2019, Accepted 14 Apr 2019, Published online: 07 May 2019
 

Abstract

Objective: Angiotensin II (Ang II) exerts its effects through two G-protein coupled receptors: angiotensin II type 1 receptors (AT1) and type 2 receptors (AT2). Both these receptor subtypes are poorly understood in asthma. In this study, we investigated effects of AT1 receptor antagonist losartan, novel AT2 receptor agonist novokinin and AT2 receptor antagonist PD 123319 in a mouse model of asthma.

Methods: Mice were divided into control (CON) and allergen sensitized (SEN) groups. SEN was sensitized with ovalbumin (OVA) on days 1 and 6 (30 μg; i.p.), followed by 5% OVA aerosol challenge (days 11–13). Treatments included (a) losartan (SEN + LOS; 20 mg/kg i.p., day 14), (b) novokinin (SEN + NOV; 0.3 mg/kg i.p., day 14), and (c) PD 123319 (SEN + PD; 5 mg/kg i.p., day 14). Experiments for airway responsiveness, bronchoalveolar lavage, and tracheal ring reactivity using isolated organ bath were performed.

Results: Airway responsiveness to methacholine (MCh) (48 mg/mL) was significantly higher in SEN (563.71 ± 40% vs. 294.3 ± 123.84 in CON). This response was potentiated in SEN + PD group (757 ± 30%; p < .05 compared to SEN). SEN + LOS (247.61 ± 86.85%) and SEN + NOV (352 ± 11%) had significantly lower response compared to SEN. SEN + LOS (26.22 ± 0.29%) and SEN + NOV (46.20 ± 0.76%) treatment significantly (p < .001) attenuated total cell count and eosinophils compared to SEN group (69.38 ± 1.5%), while SEN + PD (73.04 ± 0.69%) had highest number of eosinophils. Tracheal response to MCh was significantly higher in SEN group compared to controls, and this response was significantly lowered with the losartan and novokinin treatments.

Conclusions: These data suggest that AT1 and AT2 receptors have opposite effects in modulating airway hyperresponsiveness and inflammation in asthma.

Disclosure statement

The authors declare that they have no conflict of interest in this work.

Additional information

Funding

This work was supported by LIU Startup Funds (DSP) and National Institutes of Health grant HL027339 (SJM).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.