256
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Immunopathogenesis of multiple sclerosis: molecular and cellular mechanisms and new immunotherapeutic approaches

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 355-377 | Received 21 Sep 2023, Accepted 09 Mar 2024, Published online: 18 Apr 2024
 

Abstract

Background

Multiple sclerosis (MS) is a central nervous system (CNS) demyelinating autoimmune disease with increasing global prevalence. It predominantly affects females, especially those of European descent. The interplay between environmental factors and genetic predisposition plays a crucial role in MS etiopathogenesis.

Methods

We searched recent relevant literature on reputable databases, which include, PubMed, Embase, Web of Science, Scopus, and ScienceDirect using the following keywords: multiple sclerosis, pathogenesis, autoimmunity, demyelination, therapy, and immunotherapy.

Results

Various animal models have been employed to investigate the MS etiopathogenesis and therapeutics. Autoreactive T cells within the CNS recruit myeloid cells through chemokine expression, leading to the secretion of inflammatory cytokines driving the MS pathogenesis, resulting in demyelination, gliosis, and axonal loss. Key players include T cell lymphocytes (CD4+ and CD8+), B cells, and neutrophils. Signaling dysregulation in inflammatory pathways and the immunogenetic basis of MS are essential considerations for any successful therapy to MS. Data indicates that B cells and neutrophils also have significant roles in MS, despite the common belief that T cells are essential. High neutrophil-to-lymphocyte ratios correlate with MS severity, indicating their contribution to disease progression. Dysregulated signaling pathways further exacerbate MS progression.

Conclusion

MS remains incurable, but disease-modifying therapies, monoclonal antibodies, and immunomodulatory drugs offer hope for patients. Research on the immunogenetics and immunoregulatory functions of gut microbiota is continuing to provide light on possible treatment avenues. Understanding the complex interplay between genetic predisposition, environmental factors, and immune dysregulation is critical for developing effective treatments for MS.

Authors contribution

Conceptualization: GA, RY & MA

Literature search: MA, GA, FTZ, AC, & FH

Drawing figures: MA

Tables design: FH

Writing - original draft: FTZ AC, & FH

Writing - review & editing: MA, GA, RY, FTZ, AC, FH, SM, & MS

Supervision: GA & MA

Disclosure statement

No potential conflict of interest was reported by the author(s).

Correction Statement

This article has been corrected with minor changes. These changes do not impact the academic content of the article.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.