Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 39, 2023 - Issue 7
352
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Combined antimicrobial effect of phage-derived endolysin and depolymerase against biofilm-forming Salmonella Typhimurium

, & ORCID Icon
Pages 763-774 | Received 12 Jul 2023, Accepted 26 Sep 2023, Published online: 05 Oct 2023
 

Abstract

This study was designed to evaluate the antimicrobial activity of phage-derived endolysin (LysPB32) and depolymerase (DpolP22) against planktonic and biofilm cells of Salmonella Typhimurium (STKCCM). Compared to the control, the numbers of STKCCM were reduced by 4.3 and 5.9 log, respectively, at LysPB32 and LysPB32 + DpolP22 in the presence of polymyxin B (PMB) after 48-h incubation at 37 °C. LysPB32 + DpolP22 decreased the relative fitness (0.8) and the cross-resistance of STKCCM to chloramphenicol (CHL), cephalothin (CEP), ciprofloxacin (CIP), and tetracycline (TET) in the presence of PMB. The MICtrt/MICcon ratios of CHL, CEP, CIP, PMB, and TET were between 0.25 and 0.50 for LysPB32 + DpolP22 in the presence of PMB. These results suggest that the application of phage-encoded enzymes with antibiotics can be a promising approach for controlling biofilm formation on medical and food-processing equipment. This is noteworthy in that the application of LysPB32 + DpolP22 could increase antibiotic susceptibility and decrease cross-resistance to other antibiotics.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was financially supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A3B01008304).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.