31
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

The Implementation of the Iterative Diagonalization Scheme and ab initio Molecular Dynamics Simulation with the LAPW Method

&
Pages 343-361 | Received 01 Sep 1999, Accepted 01 Oct 1999, Published online: 23 Sep 2006
 

Abstract

A new ab initio molecular dynamics method based on the full-potential linearized-augmented-plane-wave (LAPW) basis set has been implemented. The LAPW basis set has been successfully employed for systems containing localized electrons such as first row atoms and transition metals. In our implementation of the LAPW-MD scheme, iterative residual minimization algorithm is used to solve the electronic states problem. The atoms are moved according to forces derived from the Hellman–Feynman theorem and incomplete basis set correction terms. The performance of the program is further enhanced by parallelization. We will discuss technical details of the program implementation and present results obtained from this code to the equilibrium structures and vibrational properties of simple diatomic molecules.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.