49
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Molecular Dynamics with Nonadiabatic Transitions: A Comparison of Methods

Pages 389-411 | Received 01 Jun 1999, Accepted 01 Oct 1999, Published online: 23 Sep 2006
 

Abstract

Surface hopping (SH) and density matrix evolution (DME) methods which simulate the dynamics of quantum systems embedded in a classical environments are compared with exact quantum-dynamical calculations. These methods are applied to study the inelastic collisions of a classical particle with a five-level quantum harmonic oscillator. One-dimensional, two-state models representing electronic transitions are also treated. In addition, the methods are applied to the dynamics of a proton in a bistable potential bilinearly coupled to the bath of classical harmonic oscillators. Vibrational spectra calculated by both methods compare well with each other. The SH results are, in general, closer to the results of a full quantum treatment than the corresponding DME values. The DME method breaks down in the case of extended coupling with reflection at low energies.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.