43
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

“Nanostructures in Thin-film Epitaxy: Exploring and Exploiting Substrate-mediated Interactions”

Pages 273-279 | Accepted 01 Nov 2003, Published online: 21 Aug 2006
 

Abstract

We review recent advances made in understanding the ramifications of substrate-mediated interactions for thin-film growth. Experimental studies and first-principles calculations with density-functional theory (DFT) indicate that substrate-mediated interactions can significantly influence thin-film growth. We review the findings from our kinetic Monte Carlo simulations used to model the growth of thin films, both with and without substrate-mediated interactions. For Ag heteroepitaxy on Pt(1 1 1), the pair interaction energies and adsorbate diffusion barriers were obtained from DFT calculations. Island densities for this system show significant deviations from what is predicted by classical nucleation theory. The electronic interactions created by the adsorbed atoms lead to the formation of repulsive barriers surrounding small islands and, as a result, sharp island-size distributions are produced. The island-size distributions can be manipulated by changing the growth conditions to yield desirable island sizes and shapes.

Acknowledgements

The authors are supported by NSF grants ECC-0085604 and DGE-9987589.

Notes

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.