52
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

The Extrapolation of Vapour–liquid Equilibrium Curves of Pure Fluids in Alternative Gibbs Ensemble Monte Carlo Implementations

&
Pages 549-558 | Received 01 Apr 2004, Accepted 01 Apr 2004, Published online: 31 Jan 2007
 

Abstract

Extrapolation schemes based on Taylor series expansion to determine the vapour–liquid equilibrium (VLE) curves of pure molecular fluids are presented for the NpH and μVL versions of the Gibbs ensemble Monte Carlo (GEMC) simulations. The coexistence curves of the various configurational quantities can be expressed as Taylor series around the simulated equilibrium point as a function of pressure in the NpH version and chemical potential in the μVL version. The coefficients of the Taylor series are calculated from single GEMC simulations using Clapeyron-like equations and fluctuation formulas. A Padè approximant is used to widen the range where the extrapolation is accurate. These methods are demonstrated on atomic Lennard-Jones fluid. The procedure is found to be an accurate and useful tool to calculate wide sections of the VLE curves. With this procedure the saturation heat capacity can be directly determined using the calculated derivatives.

Acknowledgements

This work has been partially supported by the Hungarian National Research Fund (OTKA-TO38239).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.