119
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

Shear viscosity and thermal conductivity of quadrupolar real fluids from molecular simulation

, &
Pages 787-793 | Published online: 12 Apr 2011
 

Abstract

In the present work, equilibrium molecular dynamics was used with the Green-Kubo formalism to simultaneously calculate shear viscosity and thermal conductivity of ten real fluids, i.e. F2, N2, O2, CO2, C2H6, C2H4, C2F6, C3H4, C3H6 and SF6. The fluids were consistently described by the two-center Lennard–Jones plus point quadrupole (2CLJQ) pair potential, whose parameters were adjusted to vapor–liquid equilibria only [J. Phys. Chem. B, 2001, 105, 12126–12133]. The predicted shear viscosities and thermal conductivities show an overall average deviation of only about 10% from correlations of experimental data where comparison was possible.

At low temperature and high density state points, the Green–Kubo integral for shear viscosity shows slow convergence. This problem can be overcome by a new approach developed in the present work. It is based on the adjustment of a suitable function describing the long time behavior of the autocorrelation function and yields reliable results without the need of excessively long simulation runs.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.