211
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Theoretical study on phthalocyanine, pyrazinoporphyrazine and their complexation with Mg2+ and Zn2+ 

, , , , &
Pages 192-198 | Received 09 Jan 2009, Accepted 24 Jun 2009, Published online: 17 Aug 2009
 

Abstract

We have studied the UV–vis absorption spectra of metal-free phthalocyanine (H2Pc), metal-free pyrazinoporphyrazine (H2PyzPz) and their complexes with Mg2 +  and Zn2 +  using semiempirical Zerners intermediate neglect of differential overlap and time-dependent density functional theory methods. The predicted absorption spectra of H2Pc and their complexes are in agreement with a previous experiment report. The calculated results show that the Q band absorption peaks of H2PyzPz and their complexes are blue-shifted by 40 nm as compared with those of H2Pc and their complexes, respectively. The frontier molecular orbitals (HOMO and LUMO) of H2Pc, H2PyzPz and their metal complexes were investigated as well. The nitrogen atoms in the pyrazine rings stabilise the HOMO more than the LUMO, and the deprotonation of the pyrrole rings induced by the metal coordination destabilises the LUMO more than the HOMO. Because of the increased band gap, the absorption bands of H2PyzPz and the metal-coordinated compounds are blue-shifted.

Acknowledgements

This study was supported by Grant No. 10031803 from the Industrial Source Technology Development Programs and a grant from the Fundamental R&D Program for Core Technology of Materials funded by the Ministry of Knowledge Economy, Republic of Korea. We thank Accelrys Korea for support with the modelling software.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.