237
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Water activity coefficients in aqueous amino acid solutions by molecular dynamics simulation: 1. Force field development

&
Pages 132-138 | Received 12 Apr 2011, Accepted 26 Jul 2011, Published online: 20 Sep 2011
 

Abstract

New force fields for molecular dynamics (MD) simulation of aqueous zwitterionic amino acid simulations were developed. These were especially designed to calculate activity coefficient of water in amino acid solutions with high accuracy. For example, aqueous solutions of the following amino acids were considered: glycine, alanine, α-aminobutyric acid, α-aminovalerianic acid, valine and leucine. The force fields were obtained by quantum chemical calculations using B3LYP/6-31G and MP2/6-311(d,p) model theories in combination with the Merz–Kollmann–Singh scheme. To further increase the accuracy of the force field, a polarised continuum was considered in all quantum chemical calculations. Water activity coefficients obtained from MD using different all-purpose literature force fields, namely, OPLS, AMBER ff03 and GROMOS 53A6 as well as experimental data are compared with the results utilising the new force field. The new force field is shown to give better results compared with experimental data than existing force fields.

Acknowledgements

The authors thank Dietmar Paschek for general support and gratefully acknowledge the support from the Deutsche Forschungsgemeinschaft (SPP1155) by grant SA 700/15.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.