627
Views
31
CrossRef citations to date
0
Altmetric
Original Articles

Determination of contact angle by molecular simulation using number and atomic density contours

, &
Pages 945-952 | Received 23 Oct 2011, Accepted 19 Mar 2012, Published online: 19 Jul 2012
 

Abstract

The contact angles of Lennard-Jones fluid droplets on a structureless solid surface, simulated using Monte Carlo simulation, are calculated by fitting isochoric surfaces and making a number of assumptions about the droplet. The results show that there are significant uncertainties in the calculated contact angles due to the choice of these assumptions, such as the grid size used in tracking the isochoric density profile, the omission of isochoric data points near the surface and the function used to fit the isochoric profile. In this study, we propose a new method of calculating density contours based on atomic density instead of number density. This method results in a much smaller variation in contact angle when applying different assumptions than using number density for isochoric contours. The most consistent results, across a range of assumptions about the droplet and the contact angle, come from averaging the contact angle from several isochoric density profiles. In addition, this gives a measurement of the variation due to the choice of isochoric density.

Acknowledgements

This research is supported under Australian Research Council's Discovery Projects funding scheme (Grant DP0985079). The authors gratefully acknowledge the HPC support from the University of Queensland.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.