245
Views
7
CrossRef citations to date
0
Altmetric
Article

Transient tertiary structures in tau, an intrinsically disordered protein

, &
Pages 1084-1092 | Received 21 Jan 2013, Accepted 04 Apr 2013, Published online: 11 Jun 2013
 

Abstract

An intrinsically disordered protein (IDP) does not have a definite 3D structure, and because of its highly flexible nature it evolves dynamically in very large and diverse regions of the phase space. A standard molecular dynamics run can sample only a limited region of the latter; even though this kind of simulation may be effective in sampling local temporary secondary structures, it is not sufficient to highlight properties that require a larger sampling of the phase space to be detected, like transient tertiary structures. But if the structure of an IDP is dynamically evolved using metadynamics (an algorithm that keeps track of the regions of the phase space already sampled), the system can be forced to wander in a much larger region of the phase space. We have applied this procedure to the simulation of tau, one of the largest totally disordered proteins. Combining the results of the simulation with small-angle X-ray scattering yields a significant improvement in the sampling of the phase space in comparison with standard molecular dynamics, and provides evidence of extended hairpin- and paperclip-like transient tertiary structures of the molecule. The more persistent tertiary pattern is a hairpin folding encompassing part of the N-terminal, the proline-rich domain, the former repeat and a functionally relevant part of the second repeat.

Acknowledgements

The authors are indebted to Dr Petra Pernot for providing access to the beamline at ESRF and for assistance during the experiment. The computer simulation was supported by CASPUR (Italy) under a Standard HPC Grant 2012 (std12-039).

Notes

1. The data bank DisProt (http://www.disprot.org) lists nearly 700 disordered proteins; the entry for tau is DP00126.

2. A description of the different isoforms can be found at http://www.uniprot.org/uniprot/P10636

3. GROMACS release 4.5.3, http://www.gromacs.org; box volume, 15,253 nm3; ffamber99 force field; SPC/E water model; time step, 2 fs; modified Berendsen thermostat, Parrinello–Rahman pressure coupling.

4.; deposition stride,  ps; height  kJ/mol; Gaussian width,  nm; limits on : upper UW ALL = 7.0 nm, lower LW ALL = 5.5 nm.

5. GAJOE parameters were set as follows: number of generations, 1000; number of ensembles, 50; number of curves per ensemble, 20; number of mutations per ensemble, 10; number of crossings per generation, 20.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.