468
Views
33
CrossRef citations to date
0
Altmetric
Articles

In silico evidences for the binding of phthalates onto human estrogen receptor α, β subtypes and human estrogen-related receptor γ

, , , , , , , & show all
Pages 408-417 | Received 13 Feb 2013, Accepted 09 Jun 2013, Published online: 17 Jul 2013
 

Abstract

Being lipophilic xenobiotic chemicals, phthalates from the surrounding environments can easily be absorbed into the biological system, thereby causing various health problems including cancer and endocrine disruption in test animals and also in humans. In the present in silico study employing Glide, Schrödinger Suite 2012, we analysed in detail the binding affinities of 12 commonly used diphthalates and their metabolites (corresponding mono ester and phthalic acid) onto the ligand-binding domain (LBD) of the human estrogen receptor α (hERα), human estrogen receptor β (hERβ) and human estrogen related receptor γ (hERRγ). Natural ligand 17β estradiol (E2), known xenoestrogen bisphenol A, the phytoestrogen genistein, the agonists/antagonists 4-hydroxy tamoxifen and raloxifene were also docked onto these receptors as positive controls for comparing the binding efficiencies with that of phthalates and their metabolites. Results revealed that E2 had less binding affinity to the receptors in comparison to certain phthalates, i.e. maximum binding scores (G score, kcal/mol) were diisononyl phthalate ( − 9.44) to hERα, monophenyl phthalate ( − 8.66) to hERβ and di(2-ethylhexyl)phthalate ( − 9.38) to hERRγ. The most concerned monophthalates established additional H bonds with certain surrounding crucial amino acid residues in the LBD, and thus showed more affinity to all the receptors than even the natural ligand and other well-characterised xenoestrogens as demonstrated in this study. Briefly, this study gives an insight into the virtual binding behaviours of commonly used phthalates and their metabolites onto hERs and hERRγ, which would accelerate further in vitro mechanistic, preclinical and clinical studies on real in vitro or in vivo platforms.

Acknowledgements

The authors would like to thank the Ministry of Environment and Forests (MoEF), Government of India for a research Grant No. 19/62/2005-RE. The authors also declare that there exists no conflict of interest.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.