254
Views
2
CrossRef citations to date
0
Altmetric
Proceedings of the 3rd International Conference on Molecular Simulation

Vibrational spectra of deuterated methane and water molecules in structure I clathrate hydrate from ab initio MD simulation

, , &
Pages 813-817 | Received 30 Jan 2014, Accepted 25 May 2014, Published online: 08 Jul 2014
 

Abstract

The deuteration of the lattice molecules in clathrate hydrates is a widely used experimental technique to clearly separate the vibrational modes. However, the effect of the deuteration on the vibrational spectra and molecular motions is not fully understood. Since the guest–host coupling may change the vibrational spectra, a detailed analysis of the vibrational spectra of deuterated clathrate hydrate is significant in the understanding of the mechanism of the vibrational shift. In this study, the vibrational spectra of the deuterated methane hydrates were calculated by ab initio molecular dynamics simulation. The intramolecular vibrational frequency of the methane in D2O lattice and deuterated methane in H2O lattice was calculated and compared with the pure methane hydrate. The bending, rocking and overtone of the bending mode was also reported. The effect of coupling of the rattling motions of guest and host molecules on the vibrational spectra was revealed.

Acknowledgements

This work was supported by a Grant-in-Aid for JSPS Fellows (Grant No. 25-5399).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.