153
Views
4
CrossRef citations to date
0
Altmetric
Articles

Molecular dynamics simulation of the nanofibrils formed by amyloid-based peptide amphiphiles

, , &
Pages 1227-1239 | Received 03 Feb 2017, Accepted 14 Apr 2017, Published online: 01 Jun 2017
 

Abstract

Atomistic molecular dynamics simulations have been performed on the peptide amphiphiles (PAs) with four amyloid beta peptide fragments as head groups. The stable structures were monitored by the root mean square deviation with respect to the energy minimised initial structures. Random coil and β-sheet structures with hydrogen bonds along and perpendicular to the long axis of the nanofibre were obtained due to the different nature of the head groups. Influences of pH and capping ends on the nanofibre structures were investigated through variation of the protonation states of the ionic amino acids in the peptides. The peptides with opposite charges on both sides were found to have the fewest β-sheet structures, and the charges on the outer terminal tended to destruct the β-sheets while those at the inner side did not. The isolated charge in the centre of peptides was found to be able to promote the formation of regular β-sheets, while multiple charged residues could not support ordered β-sheet structures. When charge neutralisation occurred between adjacent residues, regular β-sheet laminates might also occur for systems with charges at the outer terminal. With the increase of β-sheet structures formed, the original twisted structures found for random coil structures of the PAs could be diminished by the hydrogen bonds.

Acknowledgements

We acknowledge the provision of computational resources from the supercomputing center of the Chinese Academy of Sciences.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.