342
Views
12
CrossRef citations to date
0
Altmetric
Articles

Structural insights into Rab21 GTPase activation mechanism by molecular dynamics simulations

, , , , , , , & ORCID Icon show all
Pages 179-189 | Received 29 Oct 2016, Accepted 15 Jul 2017, Published online: 31 Jul 2017
 

Abstract

Rab proteins belong to the family of monomeric GTPases which are involved in the cellular membrane trafficking. Rab21 protein exists in interchangeable GTP- and GDP-bound states. Rabs switch between two active and inactive conformations like other GTPases. The inactive form of Rab is bound to GDP while its active form is bounded with the GTP. Interexchange between active and inactive form is mediated by the GDP/GTP exchange factor (GEF) which catalyses the conversion from GDP-bound to GTP-bound form, thereby activating the Rab. While the GTP hydrolysis of Rabs is regulated by a GTPase-activating protein (GAP) which causes Rab inactivation. Here, we report the structural flexibility of the Rab21-GTP and Rab21-GDP complexes by docking and molecular dynamics (MD) simulations. Structural analysis of exchange mechanisms of the co-factors complexed with Rab21 reveals that Cys29, Thr33, His48, Gln78 and Lys133 are essentially important in the activation of proteins. Furthermore, a significant change in the orientation of the interacting co-factors, with slight variation in the free energy of binding was observed. Complexation of GEF with Rab21-GTP and Rab21-GDP reveal a flipping of the switchable residues. Finally, 50 ns MD simulations confirm that the GTP-bound Rab21 complex is thermodynamically more favoured than the corresponding GDP-bound complex. This study provides a detailed understanding of the structural elements involved in the conformational changes of Rab21.

Acknowledgement

FIST support from DST is thankfully acknowledged. The authors want to acknowledge the Center for High-Performance Computing (CHPC), Cape Town, South Africa for providing the computational infrastructure.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.