463
Views
3
CrossRef citations to date
0
Altmetric
Articles

Design and molecular docking studies of new inhibitor candidates for EBNA1 DNA binding site: a computational study

ORCID Icon &
Pages 332-339 | Received 19 Oct 2019, Accepted 17 Dec 2019, Published online: 06 Jan 2020
 

ABSTRACT

Epstein-Barr virus (EBV), a member of human herpesvirus, causes infectious mononucleosis, Burkitt’s lymphoma, nasopharyngeal carcinoma, gastric carcinoma and Hodgkin lymphomas. Epstein-Barr Nuclear Antigen 1, one of antigens encoded by EBV, comprises 641 amino acid residues. Among the latent infection Epstein-Barr Nuclear Antigen 1 acts in DNA replication, transcription of viral and cellular genes and in immortalisation of B lymphocytes. These special roles of Epstein-Barr Nuclear Antigen 1 make it an important drug target. Therefore, in this study, we create a ligand set of totally 2068 ligands to block binding DNA to Epstein-Barr Nuclear Antigen 1 antigen. After applying Lipinski’s Rule of Five filter to these ligands, 1637 ligands which are suitable to be a drug were run into molecular docking studies. It was seen that designed ligands show more activity to prevent binding DNA to Epstein-Barr Nuclear Antigen 1 antigen rather than ligands selected from the literature which are also studied in vitro and in silico.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.