177
Views
0
CrossRef citations to date
0
Altmetric
Articles

Nanoscrolls made from boron nitride nanotubes with helical fissure

, , , , , ORCID Icon & show all
Pages 346-353 | Received 26 Oct 2020, Accepted 31 Dec 2020, Published online: 08 Feb 2021
 

ABSTRACT

Molecular mechanics calculations demonstrate that boron-nitride nanoscrolls (BNNSs) can be formed from boron-nitride nanotubes (BNNTs) with cut helical fissure taking self-assembly principle. The assembly process and energy analyzations show that the van der Waals interaction between hexagonal boron-nitride (h-BN) layers provides the main driving force and the angle torsion of B-N bonds promotes the self-assembly of cut BNNTs. The pattern of fissure, the diameter and length of BNNTs can affect the self-assembly to form planer h-BN monolayer, single- or double-BNNSs. The results indicate that the helical pattern of fissure can ensure the formation of BNNSs and the length of BNNSs can be designed by controlling the density of cut fissure. The dependence of scroll-forming dynamics on temperature, and differences of self-assembly between BNNT and carbon nanotube with helical fissure are also explored. The method of cutting fissure may suggest a new way to assist isolated BNNTs to form BNNSs.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work is supported by the National Natural Science Foundation of China [grant number 11974153] and the Natural Science Foundation of Shandong Province, China [grant numbers ZR2019MA030, ZR2017JL007].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.