53
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Computer Simulation of Liquid Crystal Films

Pages 61-78 | Received 01 Jan 1989, Accepted 01 Mar 1989, Published online: 23 Sep 2006
 

Abstract

We present the results of extensive Monte Carlo simulations of liquid crystal films of various thicknesses. A simple nearest-neighbour lattice model, the Lebwohl-Lasher model, is employed, with periodic boundaries in two directions and free, planar, surfaces in the third. Particular attention is devoted to locating the temperature of the order-disorder (nematic-isotropic) phase transition. Weak first-order behaviour apparently persists in systems as thin as 8 layers across, but below this the transition cannot be detected. The shift of the transition temperature from its bulk value approaches the expected asymptotic linear dependence on inverse thickness, but significant deviations from this are seen for films of 10 layers thickness and less. These results enable an accurate estimate to be made of the bulk phase transition temperature in the thermodynamic limit, and the result is consistent with that extrapolated from systems with full periodic boundaries.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.