104
Views
97
CrossRef citations to date
0
Altmetric
Original Articles

Molecular Dynamics Simulations of Proteins in Water Without the Truncation of Long-range Coulomb Interactions

Pages 321-333 | Received 01 May 1991, Accepted 01 Sep 1991, Published online: 23 Sep 2006
 

Abstract

A new program package (COSMOS90) for molecular dynamics simulations was developed to simulate large molecular systems consisting of more than tens of thousands of atoms without the truncation of long-range coulomb interactions. This program package was based on a new approximation scheme (PPPC) for calculating efficiently the coulomb interactions without sacrificing accuracy. In this approximation scheme, the group of charges at a long distance from each atom was represented by a total charge and total dipole moment of the group. In order to assess the accuracy of PPPC and the ability of COSMOS90, molecular dynamics simulations were carried out for a large system consisting of 16108 atoms (human lysozyme in water) for 50 ps using this program package. The coulomb energy per solute atom was calculated with only five percent of the error found in the 10 Å cut-off approximation (about 0.9 kcal/mol versus 18 kcal/mol, respectively). The molecular dynamics simulations using COSMOS90 require no more CPU time than the simulations based on the 10 Å cut-off approximation of the conventional programs for macromolecular simulations.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.